Spectral-reflectance linear models for optical color-pattern recognition.

نویسندگان

  • Juan L Nieves
  • Javier Hernández-Andrés
  • Eva Valero
  • Javier Romero
چکیده

We propose a new method of color-pattern recognition by optical correlation that uses a linear description of spectral reflectance functions and the spectral power distribution of illuminants that contains few parameters. We report on a method of preprocessing color input scenes in which the spectral functions are derived from linear models based on principal-component analysis. This multichannel algorithm transforms the red-green-blue (RGB) components into a new set of components that permit a generalization of the matched filter operations that are usually applied in optical pattern recognition with more-stable results under changes in illumination in the source images. The correlation is made in the subspace spanned by the coefficients that describe all reflectances according to a suitable basis for linear representation. First we illustrate the method in a control experiment in which the scenes are captured under known conditions of illumination. The discrimination capability of the algorithm improves upon the conventional RGB multichannel decomposition used in optical correlators when scenes are captured under different illuminant conditions and is slightly better than color recognition based on uniform color spaces (e.g., the CIELab system). Then we test the coefficient method in situations in which the target is captured under a reference illuminant and the scene that contains the target under an unknown spectrally different illuminant. We show that the method prevents false alarms caused by changes in the illuminant and that only two coefficients suffice to discriminate polychromatic objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separating a Color Signal into Illumination and Surface Reflectance Components: Theory and Applications

We present a “separation” algorithm for achieving color constancy and theorems concerning its accuracy. The algorithm requires extra information from the optical system, over and above the usual three values mapping human cone responses. However, with this additional information-specifically, a sampling across the visible range of the reflected, color-signal spectrum impinging on the optical se...

متن کامل

Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces.

Our analysis of color constancy in a companion paper [J. Opt. Soc. Am A 10, 2148 (1993)] provided an algorithm that lets one test how well linear color constancy schemes work. Here we present the results of applying the algorithm to a large parametric class of color constancy problems involving bilinear models that relate photoreceptoral spectral sensitivities, surface reflectance functions, an...

متن کامل

Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging

Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...

متن کامل

Fields of non-linear regression models for atmospheric correction of satellite ocean-color imagery

Remote sensing of ocean color from space, a problem that consists in retrieving spectral marine reflectance from spectral top-of-atmosphere reflectance, is considered as a collection of similar inverse problems continuously indexed by the angular variables influencing the observation process. A general solution is proposed in the form of a field of non-linear regression models over the set T of...

متن کامل

Yule-Nielsen effect in halftone prints: graphical analysis method and improvement of the Yule-Nielsen transform

The well-known Yule-Nielsen modified spectral Neugebauer model is one of the most accurate predictive models for the spectral reflectance of printed halftone colors which expresses the spectral reflectance of halftones raised to the power 1/n as a linear combination of the spectral reflectance of the fulltone colors (Neugebauer primaries) also raised to the power 1/n, where n is a tunable real ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 43 9  شماره 

صفحات  -

تاریخ انتشار 2004